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NEW YORK, October 3, 2016 — Columbia scientists have developed a new 
mathematical model that helps to explain how the human brain’s biological 
complexity allows it to lay down new memories without wiping out old ones — 
illustrating how the brain maintains the fidelity of memories for years, decades or 
even a lifetime. This model could help neuroscientists design more targeted 
studies of memory, and also spur advances in neuromorphic hardware — 
powerful computing systems inspired by the human brain.  
 
This work is published online today in Nature Neuroscience. 
 
“The brain is continually receiving, organizing and storing memories. These 
processes, which have been studied in countless experiments, are so complex 
that scientists have been developing mathematical models in order to fully 
understand them,” said Stefano Fusi, PhD, a principal investigator at Columbia’s 
Mortimer B. Zuckerman Mind Brain Behavior Institute, associate professor of 
neuroscience at Columbia University Medical Center and the paper’s senior 
author. “The model that we have developed finally explains why the biology and 
chemistry underlying memory are so complex — and how this complexity drives 
the brain’s ability to remember.” 
 
Memories are widely believed to be stored in synapses, tiny structures on the 
surface of neurons. These synapses act as conduits, transmitting the information 
housed inside electrical pulses that normally pass from neuron to neuron. In the 
earliest memory models, the strength of electrical signals that passed through 
synapses was compared to a volume knob on a stereo; it dialed up to boost (or 
down to lower) the connection strength between neurons. This allowed for the 
formation of memories. 
 
These models worked extremely well, as they accounted for enormous memory 
capacity. But they also posed an intriguing dilemma. 
 
“The problem with a simple, dial-like model of how synapses function was that it 
was assumed their strength could be dialed up or down indefinitely,” said Dr. 
Fusi, who is also a member of Columbia’s Center for Theoretical Neuroscience. 



 
“But in the real world this can’t happen. Whether it’s the volume knob on a 
stereo, or any biological system, there has to be a physical limit to how much it 
could turn.” 
 
When these limits were imposed, the memory capacity of these models 
collapsed. So Dr. Fusi, in collaboration with fellow Zuckerman Institute 
investigator Larry Abbott, PhD, an expert in mathematical modeling of the brain, 
offered an alternative: each synapse is more complex than just one dial, and 
instead should be described as a system with multiple dials.  
 
In 2005, Drs. Fusi and Abbott published research explaining this idea. They 
described how different dials (perhaps representing clusters of molecules) within 
a synapse could operate in tandem to form new memories while protecting old 
ones. But even that model, the authors later realized, fell short of what they 
believed the brain — particularly the human brain — could hold.  
 
“We came to realize that the various synaptic components, or dials, not only 
functioned at different timescales, but were also likely communicating with each 
other,” said Marcus Benna, PhD, an associate research scientist at Columbia’s 
Center for Theoretical Neuroscience and the first author of today’s Nature 
Neuroscience paper. “Once we added the communication between components 
to our model, the storage capacity increased by an enormous factor, becoming 
far more representative of what is achieved inside the living brain.” 
 
Dr. Benna likened the components of this new model to a system of beakers 
connected to each other through a series of tubes.  
 
“In a set of interconnected beakers, each filled with different amounts of water, 
the liquid will tend to flow between them such that the water levels become 
equalized. In our model, the beakers represent the various components within a 
synapse,” explained Dr. Benna. “Adding liquid to one of the beakers — or 
removing some of it — represents the encoding of new memories. Over time, the 
resulting flow of liquid will diffuse across the other beakers, corresponding to the 
long-term storage of memories.’’ 
 
Drs. Benna and Fusi are hopeful that this work can help neuroscientists in the 
lab, by acting as a theoretical framework to guide future experiments — 
ultimately leading to a more complete and more detailed characterization of the 
brain. 
 
“While the synaptic basis of memory is well accepted, in no small part due to the 
work of Nobel laureate and Zuckerman Institute codirector Dr. Eric Kandel, 
clarifying how synapses support memories over many years without degradation 
has been extremely difficult,” said Dr. Abbott. “The work of Drs. Benna and Fusi 



 
should serve as a guide for researchers exploring the molecular complexity of the 
synapse.” 
 
The technological implications of this model are also promising. Dr. Fusi has long 
been intrigued by neuromorphic hardware, computers that are designed to 
imitate a biological brain.  
 
“Today, neuromorphic hardware is limited by memory capacity, which can be 
catastrophically low when these systems are designed to learn autonomously,” 
said Dr. Fusi. “Creating a better model of synaptic memory could help to solve 
this problem, speeding up the development of electronic devices that are both 
compact and energy efficient — and just as powerful as the human brain.”  
 
This paper is titled: “Computational principles of synaptic memory consolidation.”  
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Columbia University’s Mortimer B. Zuckerman Mind Brain Behavior Institute brings together 
an extraordinary group of world-class scientists and scholars to pursue the most urgent and 
exciting challenge of our time: understanding the brain and mind. A deeper understanding of the 
brain promises to transform human health and society. From effective treatments for disorders 
like Alzheimer’s, Parkinson’s, depression and autism to advances in fields as fundamental as 
computer science, economics, law, the arts and social policy, the potential for humanity is 
staggering. To learn more, visit: zuckermaninstitute.columbia.edu. 
 
 


